Why it is a good time for Geoscientists to get involved in CO₂ storage

Why exploration geophysical workflows are appropriate for CO2 storage, *Finding Petroleum, 18th May 2022*

Chris Gent Policy Manager Carbon Capture and Storage Association

Contents:

1. About the CCSA

2. UK CCUS Delivery Plan 2035 project

3. From concept to post-injection closure – the role of the Geoscientist

4. Storage development in a wider regional and policy context

About the CCSA

- The Carbon Capture and Storage Association is unique in its representation of the entire CCUS value chain.
- Our focus is on:
 - Advocating for policy developments in UK, EU and internationally towards a long-term regulatory and incentive framework for CCS
 - Raising awareness of CCS as a vital tool in fighting climate change and delivering sustainable long-term clean growth
 - > Driving progress on commercial-scale projects
 - A technology neutral approach (geological storage and utilisation, capture from industry, power, hydrogen, bioenergy, direct air capture and different capture technologies)
- Find out more at <u>www.ccsassociation.org</u>

CCSA Members

Contents:

1. About the CCSA

2. UK CCUS Delivery Plan 2035 project

3. From concept to post-injection closure – the role of the Geoscientist

4. Storage development in a wider regional and policy context

What is the purpose of the 'CCUS Delivery Plan 2035'?

The report recommends how to best achieve the UK Government's 2035 CCUS ambition, in order to remain on track for Net Zero by 2050

- The project had two strands:
 - 1. Profiling the recommended build-out rate of CCUS in the UK to reach the government's 2035 ambition; and
 - 2. Identifying actions required to enable its delivery
- Members, industrial clusters across the UK, and external stakeholders were engaged in a series of workshops to identify the building blocks for a successful industry and the enabling actions required

Build out rate analysis

Anonymised project data was aggregated from cluster leads to identify current and potential build-out rates

Emissions captured and stored to 2035 by CCSA scenario

CCSA

Industry can deliver a pipeline of storage and emitter projects that meets the 2035 ambition

Constrained and additional emitter volumes and store capacity over time – 'Enabling industry pipeline' scenario

Notes: Emitter and storage data based on a mixture of publicly available information and information from projects. The timelines shown are indicative and based on an expedient Track-2 process launching this year, potential for FID in 2024 and operational in 2027. Licensed store capacity includes all licensed stores for both Track-1 clusters and other clusters. Unlicensed storage includes store volumes where license applications have been submitted, high confidence storage with a licence pending, or where approvals for licence expansion are required. Capture targets in 2030 and 2035 based on Net Zero Strategy; for 2050 targets refer to CCC targets, showing a range between the 'Tailwinds' and 'Widespread Innovation' scenarios

Contents:

1. About the CCSA

2. UK CCUS Delivery Plan 2035 project

3. From concept to post-injection closure – the role of the Geoscientist

4. Storage development in a wider regional and policy context

Theoretical Storage to Operation – a 10 year journey

CCSA

Exploration and Appraisal Activity Zone

From: Exploration Task Force, 2021. Exploration and appraisal for CO2 storage sites in the UK. <u>www.explorationtaskforce.org.uk</u>

The role of the Geoscientist in a CCUS project

The UKCS – Exploring in a mature province

Description	Units	Min	Most Likely	Max	Source	Confidence (L,M,H)
Area \tag	[km ²]	65.97	73.30	80.63		
Average Gross Thickness	[m]	243.56	250.91	259.24	PGS Surfaces	Medium
Estimated Relief	[m]		538.19		PGS Surfaces	Medium
Shape Factor 💷			1.000			
Average Areal Net Sand	[frac]	0.98	0.99	1.00	BGS Shapefiles	Medium
Average Vertical NTG	[frac]	0.71	0.91	1.00	BGS held wells	Medium
Average Porosity 0	[frac]	0.05	0.14	0.24	BGS held wells	Medium
Gross Rock Volume 0	[10 ⁶ m ³]					
Pore Volume 0	[10 ⁶ m ³]					
Aspect Ratio						
Thickness Area	[10 ⁻⁶ m ⁻¹]		3.4231			

The UKCS – Exploring in a mature province

Pressure management – Fault seal integrity

From: Williams, J.O., & Gent, C.M.A, 2015. Shallow Gas Offshore Netherlands - The Role of Faulting and Implications for CO2 Storage. *Faults and Top Seals – Conference Almeria.*

Pressure management – Regional Stress Regimes

From: Williams, J.D.O.; Gent, C.M.A.; Fellgett, M.W.; Gamboa, D. 2018 Impact of in situ stress and fault reactivation on seal integrity in the East Irish Sea Basin, UK. *Marine and Petroleum Geology*, 92. 685-696.

Pressure management – Regional Stress Regimes

From: Williams, J.D.O.; Gent, C.M.A.; Fellgett, M.W.; Gamboa, D. 2018 Impact of in situ stress and fault reactivation on seal integrity in the East Irish Sea Basin, UK. *Marine and Petroleum Geology*, 92. 685-696.

Pressure management – Regional Coupled Models

From: Williams, J.D.O.; Williams, G.A., Bridger, P. 2021. Regional geomechanical response to large-scale CO2 storage in an extensive saline aquifer formation. *EAGE 2nd Geoscience & Engineering in Energy Transition Conference.*

- CO₂ separated from natural gas from the East Sleipner Field
- CO₂ injection into the regional Miocene Utsira Sandstone Formation
- Shallow marine shelf deposit with interbedded thin shale layers
- One single CO₂ injection well
- Injected ~1Mt p.a. since September 1996
- Regular 3D seismic surveys before and during CO₂ injection

From He, Manchao & Sousa, Luís & Sousa, Rita & Gomes, Ana & Jr, Euripedes & Zhang, Na. (2011). Risk assessment of CO2 injection processes and storage in carboniferous formations: a review. Journal of Rock Mechanics and Geotechnical Engineering. 2011. 39-56. 10.3724/SP.J.1235.2011.00039.

From Chadwick, R.A., Williams, G.A., Williams, J.D.O. and Noy, D.J., 2012. Measuring pressure performance of a large saline aquifer during industrial-scale CO2 injection: The Utsira Sand, Norwegian North Sea. International Journal of Greenhouse Gas Control, 10, pp.374-388.

From Williams, G.A. and Chadwick, R.A., 2021. Influence of reservoir-scale heterogeneities on the growth, evolution and migration of a CO2 plume at the Sleipner Field, Norwegian North Sea. International Journal of Greenhouse Gas Control, 106, p.103260.

From Williams, G.A. and Chadwick, R.A., 2021. Influence of reservoir-scale heterogeneities on the growth, evolution and migration of a CO2 plume at the Sleipner Field, Norwegian North Sea. International Journal of Greenhouse Gas Control, 106, p.103260.

From Akai, T., Kuriyama, T., Kato, S. and Okabe, H., 2021. Numerical modelling of long-term CO2 storage mechanisms in saline aquifers using the Sleipner benchmark dataset. *International Journal of Greenhouse Gas Control*, *110*, p.103405.

Contents:

- 1. About the CCSA
- 2. UK CCUS Delivery Plan 2035 project
- 3. From concept to post-injection closure the role of the Geoscientist
- 4. Storage development in a wider regional and policy context

CCUS: The role of CCUS in achieving global net zero ambitions

Figure 2.21 > Global CO₂ capture by source in the NZE

IEA. All rights reserved.

By 2050, 7.6 Gt of CO₂ is captured per year from a diverse range of sources. A total of 2.4 Gt CO₂ is captured from bioenergy use and DAC, of which 1.9 Gt CO₂ is permanently stored.

"CCS is a necessity, not an option"

UK Climate Change Committee, 6th Carbon Budget Advice

CCSA

CCUS Technologies

- **Capture CO₂:** use adsorbents to capture CO2 from:
 - Power generation
 - Industrial activity (cement, refinery, steel etc)
 - Hydrogen production
 - Bioenergy sources (BECCS) and the air (DACCS)
- Transport CO₂ via pipeline or ship
- Store CO₂ in deep geological formations, e.g. depleted oil & gas fields or deep saline formations.
- Use CO₂ in products, albeit for more limited climate benefit.
- **Store Hydrogen**: Hydrogen storage in deep geological formations

Thank You

Chris.gent@CCSAssociation.org

www.ccsassociation.org

@The_CCSA

